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ABSTRACT 

Si l icon  and gallium arsenide arrays w e r e  
s tudied and compared f o r  LEO, GEO, and LEO t o  GEO 
electric propulsion o r b i t  t r a n s f e r  missions. The 
study determined the s e n s i t i v i t i e s  of t o t a l  cos t  t o  
parameters such as mission durat ion,  array cos t ,  
cover glass  thickness, and concentration r a t i o .  
The purpose was t o  guide technology development and 
t o  quant i fy  cos t  t radeoffs  between s i l i c o n  and gal-  
l i u m  arsenide arrays f o r  selected mission classes .  
Results ind ica te  t h a t  development of the technology 
f o r  low cos t ,  l i g h t w e i g h t  concentrators should be 
increased and t h a t  cost  reduction e f f o r t s  f o r  gal-  
l i u m  arsenide cells be pursued. 

INTRODUCTION 

During the  l as t  three years the NASA-Lewis Re- 
search Center has been supporting e f f o r t s  t o  def ine 
technology needs t o  s a t i s f y  the projected increas- 
ing power requirements of fu ture  space missions. 
One of the s tudies  carr ied out has  been i n  the area 
of s o l a r  arrays f o r  space power generation. Specif- 
i c a l l y ,  S i l i c o n  and Gallium Arsenide s o l a r  arrays 
w e r e  compared on the bas is  of their t o t a l  cos t  as  a 
function of various parameters (e.g., mission dura- 
t ion ,  cover glass  thickness and concentration 
r a t i o ) .  

The s o l a r  a r r a y  systems were studied and com- 
pared f o r  LEO (300 n. mi. low-Earth o r b i t ) ,  GEO 
(geosynchronous Earth o r b i t )  and LEO t o  GEO elec- 
t r ic  propulsion missions. The cos t analysis  f o r  
the o r b i t a l  missions included launch costs  and pur- 
chase, costs f o r  arrays t h a t  w e r e  s ized f o r  end of 
l i f e  power. For t h e  o r b i t  t ransfer  missions the 
Launch 2nd purchase costs  of the propulsion system 
w e r e  included i n  t h e  c o s t  analysis .  

T%e p r i n c i p a l  r e s u l t  of t h e  study has been t o  
quant i fy  the c o s t  t radeoffs  between gallium arse- 
n ide  and s i l i c o n  arrays f o r  s p e c i f i c  c lasses  of 
missions and system charac te r i s t ics .  The conclu- 
s ions a r e  being used t o  provide guidance t o  Lewis  
s o l a r  c e l l  technology e f f o r t s .  

*Aerospace Engineer, Systems Concepts Branch, Space 
Propulsion and Power Division 

BASIC ASSUMPTIONS 

A basel ine set of input  parameters was defined 
and assumptions made in regard t o  cast, efficiency, 
mass and o ther  propert ies  of the s o l a r  a r ray  sys- 
tems. 
determine the sensitivities of the cos ts  t o  the in- 
puts (e.g., mission duration, cover g lass  thickness 
and concentration r a t i o ) .  The base case a r r q  pur- 
chase cos ts  w e r e  assumed t o  be $300/W f o r  the sili- 
con ar ray  and $500/W f o r  the gallium arsenide array. 
Transportation cos ts  w e r e  assumed t o  be $700/kg f o r  
launch t o  LEO and $11,50O/kg f o r  launch t o  GEO (1); 
volume and packaging constraints  w e r e  no t  con- 
sidered i n  the t ranspor ta t ion  costs .  The AM0 e f f i -  
ciency of the s i l i c o n  arrays was assumed t o  be 147. 
and of the  gallium arsenide arrays,  177. a t  a tem- 
perature of 60° C.  
the propulsion system (electric thrus te rs )  was 
sized f o r  the end of l i f e  power of the s o l a r  array.  

The s p e c i f i c  masses of the arrays w e r e  derived 
from the reference c e l l  da ta  shown on Table 1. The 
spec i f ic  masses f o r  the o r b i t a l  cases w e r e  31.5 g/W 
for  s i l i c o n  arrays and 28.5 g/W f o r  gallium arse- 
nide arrays.  The o r b i t  t r a n s f e r  cases assumed 2 

0.051 cm cover, based on r e s u l t s  t o  be discussed 
l a t e r ,  r e s u l t i n g  i n  s p e c i f i c  mzsses of 35.4 g/W f o r  
s i l i c o n  arrays and 31.7 g/W f o r  galliun, arsenide 
arrays. 

Some of these parameters w e r e  var ied t o  

For the o r b i t  t r a n s f e r  missions, 

TABLE I. - REFERENCE CELL MASS DATA 

0.2 nnn s i l i c o n  ( s i l i c o n  cell only), g . . .  
0.2 mm GaAs (GaAs cell  only), g . . . . . .  
Two 0.11 m adhesive layers, g. . . . . . .  
0.15 mm cover g lass  ( o r b i t a l  cases), g- . . 
0.51 mm cover g lass  (orb i t  t ransfer ) ,  g . . 
Array s t r u c t u r e  per  cell, g . . . . . . . .  
AMO s o l a r  f lux ,  w/cmz . . . . . . . . . . .  
Cell area,  cmz. . . . . . . . . . . . . . .  

. 0.186 . 0.425 . 0.097 
0 -1275 
0 -4335 . . 2.0 . 0.137 
. . - 4  

Additional input  parameters w e r e  required f o r  
analysis of the cases w i t h  concentrated arrays. 
A concentrator s p e c i f i c  mass of 1 kg/& of re- 
f lec ted  sunl ight  and a concentrator s p e c i f i c  c o s t  
of $2000/m2 of r e f l e c t e d  sunl ight  w e r e  assumed. 
The concentrator mass and c o s t  w e r e  normalized t o  
the area of sunlight re f lec ted  onto the ar ray  t o  
keep the analysis  independent of concentrator con- 
f igura t ion  and eff ic iency.  For the concentrated 
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cases, a r ray  temperature was calculated using t h e  
S tefan-Bo LtzmaM radiat ion r e l a  tionship. S i l i c o n  
ar ray  output was assumed t o  decrease by 0.5% per  OC 
u n t i l  it reached zero a t  260° C (2). GaAs ar ray  
output was assumed t o  decrease by 0.17% per  OC (3). 

The reference o r b i t  t r a n s f e r  mission trans- 
ported a 1000 kg payload from LEO t o  GF.0 i n  .1 year  
using e l e c t r i c  propulsion. 
defined as  the sum of the propulsion system c o s t  
including propel lent ,  the a r ray  purchase c o s t  and 
t ransportat ion cos ts  t o  LEO. The propulsion system 
mass was calculated based on a modular approach de- 
scribed i n  Ref. 4 and vas assumed to be 200 kg plus 
17 kg/kbT of input  power. Using the rocket  equa- 
t ions and the basel ine s tudy assumptions, i t  can be 
calculated t h a t  4.4 W are  required t o  t ransport  
1 kg from LEO t o  GEO i n  1 year. This was based on 
propulsion system assumptions o f  3000 sec s p e c i f i c  
impulse, 6000 m/sec veloci ty  increment, and propul- 
s ion  system ef f ic iency  of 70%. 
s ion  system was assumed t o  c o s t  $300/W. 
pel lan t  mass was calculated t o  be 0.05 kg/W/yr and 
assumed t o  c o s t  $50/kg. 

Total  mission cos ts  a r e  

The electric propul- 
The pro- 

SOLAR CELL DEGRADATION 

Gallium arsenide s o l a r  cells have a recognized 
advantege over s i l i c o n  s o l a r  cells i n  tenus of radi-  
a t ion  tolerance. Figure 1 represents the normal- 
ized curves o f  power versus rad ia t ion  dose used i n  
the study. The s i l i c o n  curve represents a 10 ohm- 
cm textured c e l l  with back surface f i e l d  (5) while 
the gallium arsenide curve is based on data  from 
experimental cells (3). Comparison of the curves 
of Fig. 1 shows that gallium arsenide has 5% t o  10% 
less degradation f o r  o r b i t a l  missions of 10 years 
and 2% t o  3% less degradation t h a t  s i l i c o n  f o r  o r b i t  
t ransfer  missions of 1 year. There i s  a crossover 
i n  radiat ion tolerance corresponding t o  o r b i t  t rans-  
f e r  missions of 1.5 years duration. 

GaAs and s i l i c o n  ar ray  costs versus LEO and 
GEO mission durat ions a r e  shown on Fig. 2. The GEO 
costs  a r e  higher  than the LEO costs  because the 
launch cos t  i s  much greater  f o r  the GEO mission. 
Since the cos ts  a r e  calculated on a per end-of-life 
wat t  basis ,  the costs  increase due t o  degradation 
as  mission durat ion increases. This cos t  increase 
due t o  degradation i s  only a small pas t  of the t o t a l  
cost. 

As an example, the GaAs purchase c o s t  i s  60% 
of the BOL cos t  f o r  a GEO mission, the  remainder 
being t ransportat ion set. However, degradation 
fo r  a ten-year-mission only adds 25% t o  the  BOL 
cost  . 

Comparison of the c u n e s  on Fig. 2 shows s i l i -  
con costs  t o  be lower than GaAs costs f o r  LEO and 
GEO o r b i t a l  missions. This is  pr incipal ly  caused 
by the array purchase cos t  d i f f e r e n t i a l  of .$200/W. 
However, f o r  the GEO case, the overa l l  GaAs system 
c o s t  (including launch c o s t )  is  only $lOO/W more 
than the  s i l i c o n  cost .  This i s  because the GaAs 
array mass per  wat t  of output i s  less than f o r  s i l i -  
con, resu l t ing  i n  lower launch costs f o r  G a b .  

Purchase c o s t  is the dominant f a c t o r  i n  LEO 
a r ray  c o s t  and a l so  one of the two major fac tors  in 
GEO ar ray  cost ,  the o ther  being launch costs. Tech- 
nology e f f o r t s  i n  GaAs and s i l i c o n  should be t o  re- 
duce cell production cos ts  per  w a t t  o f  output i n  
addi t ion  t o  w e i g h t  reduction and rad ia t ion  t o l e r m c e -  

The t o t a l  mission cost;as defined previously, 
f o r  an electric propulsion LEO t o  GEO mission w i t h  
a 1000 kg payload is s h m  on Fig. 3 versus mission 
duration. As mission time increases ,  the power and 
propulsion requirements decrease, and cost there- 
fore  decreases. There are, however, pene l t ies  such 
as c o s t  of c a p i t a l  investment which would penal ize  
a long durat ion o r b i t  t r a n s f e r  mission which hme 
not  been included i n  the analysis .  
a l  cases, t h e  o r b i t  t r a n s f e r  mission c o s t  is higher  
using GaAs s o l a r  arrays than using s i l i c o n  s o l a r  
arrays for all mission durat ions shown. This is 
again pr imari ly  due t o  the $200/W a r r a y  purchzse 
c o s t  advantage of s i l i c o n .  
mission durat ion i s  reduced below L year. 
array and propulsion system assumptions used in t h i s  
study produce a power t o  mass r a t i o  t h a t  l i m i t s  the 
minimm t r i p  time t o  about 113 year. 

As i n  the o r b i t -  

Cost rises rapidly as 
The 

CONCENTRATED ARRAYS 

A performance advantage of gallium arsenide 
s o l a r  arrays over s i l i c o n  s o l a r  arrays i s  t h e i r  
g r e a t e r  operat ional  temperature range. Gallium 
arsenide arrays w i l l  produce about two-thirds as  
much power a t  260° C as  a t  60° C,  whereas s i l i c o n  
s o l a r  arrays decl ine t o  zero output  a t  260° C .  A 

' p o t e n t i a l  bonus, although not  considered i n  this 
study, is t h a t  gallium arsenide s o l a r  arrays may 
begin t o  s e l f  auneal the rad ia t ion  damage a t  ZOOo C 
(6) * 

The grea ter  operat ional  temperature range of 
GaAs enables it t o  benefi t  from s o l a r  concentration 
more than s i l i c o n  i n  an uncooled concentrator sys- 
tem.  Costs versus concentrat ion r a t i o  f o r  s i l i c o n  
and GaAs arrays f o r  ten-year LEO and GEO o r b i t a l  
missions a r e  shown on Fig. 4. The GEO curves a r e  
s i m i l a r  t o  the LEO curves, d i f f e r i n g  mainly because 
the launch cos t  t o  GEO is higher. Costs f o r  s i l i-  
con ar rays  as  shown i n  Fig. 4 increase rap id ly  a t  
concentration r a t i o s  g r e a t e r  than four. This is 
caused by the decrease i n  ef f ic iency  of the s i l t c o n  
ar ray  w i t h  increasing temperature avercoming the 
benef i t s  of s o l a r  concentration. S i l i c o n  errays 
could be used a t  higher  concentration r 2 t i o s  if 
cooling w e r e  supplied, but  without cooling, the 
optimum concentration - ra t io  appears 
The GaAs curves show continuing c o s t  reduction as  
t h e  concentration r a t i o  was increased t o  ten. Gab 
costs  a t  a concentration r a t i o  of ten are about 
h a l f .  the minimum s i l i c o n  costs .  These c u n e s  i l l u s -  
t r a t e  the poten t ia l  savings i n  s o l a r  a r ray  cos ts  
through the use of concentration. However, t o  rea l -  
i z e  this cos t  savings i t  is necessary t o  develop 
low c o s t ,  low mass s o l a r  concentrators s i m i l a r  t o  
those baselined i n  t h i s  study. Additional s2Vings 
f o r  both GaAs and si would be possible  if l o w  cost ,  
low mass cooling concepts a r e  developed. 

be about t w ~ .  

Figure 5 shows the cos ts  f o r  concentrated 
arrays f o r  the o r b i t  t r a n s f e r  mission. As in the 
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o r b i t a l  cases, there is  a s i g n i f i c a n t  savings 
(about 30% t o  40% of the t o t a l  mission cos t )  achiev- 
a b l e  by using GaAs s o l a r  c e l l s  w i t h  s o l a r  concentra- 
t ion .  

VARIATION OF COVER GLASS TRICRNESS 

Cover g l a s s  thickness was var ied from 0 - 
0.B an (0-60 mils) t o  evaluate  t h e  t radeoff  be- 
tween the c o s t  associated wi th  increased cover 
g lass  mass aad the increased rad ia t ion  protect ion 
o f  a th icker  cover glass .  It was assumed t h a t  
cover glass  thickness could be modified without 
changing the a r r a y  c o s t  assumptions o r  a r ray  s t ruc-  
t u r e  weight. Figure 6 shows a r r a y  cos t  versus 
cover g lass  thiclmess f o r  a 10 year mission f o r  the 
LEO and GEO o r b i t a l  cases. The no coverglass point  
on t h e  GEO curve was omitted because bare  cells 
would not  survive i n  GEO. There is  a slight cos t  
reduction shown f o r  increasing cover g lass  thick- 
ness t o  0.05 cm, but  the c o s t  savings does not  ap- 
pear s u f f i c i e n t  t o  warrant changing from the  con- 
vent ional  thicknesses of about 0.01 cm. 

llhe o r b i t  t r a n s f e r  mission s p i r a l s  out  from 
LEO t o  GEO and passes through t h e  Van A l l e n  radia- 
t i o n  be l t s .  The rad ia t ion  f l u x  is  therefore  two t o  
three orders of magnitude g r e a t e r  i n  t h e  o r b i t  
t r a n s f e r  mission than i n  the o r b i t a l  missions. To 
pro tec t  the s o l a r  cells from this high rad ia t ion  
environment, a th ick  cover g lass  is  required. Fig- 
u r e  7 shows t h a t  t o t a l  mission c o s t  f o r  the o r b i t  
t r a n s f e r  mission rises rap id ly  i f  the cover glass  
thickness is reduced below 0.05 cm. For t h e  o r b i t  
transfer mission and f o r  o ther  missions w i t h  a very 
high r z d i a t i o n  exposure th ick  cover g lass  4 - 0 5  cm 
(20 mils)  i s  recommended. Although the cos ts  shown 
on Fig.  7 continue t o  decrease f o r  cover thicknesses 
grea te r  than 0.05 cm, there a r e  fac tors  not  included 
in t h i s . a n z l y s i s ,  such as increased s t r u c t u r e  weight 
and handling problems which would tend t o  increase 
the costs  f o r  th icker  cover g lass .  

CONCLUSIONS 

An economic analysis  has been performed on 
s i l i c o n  and gallium arsenide a r ray  (planar and con- 
centrated)  systems f o r  the generation of power in  
space on o r b i t a l ,  LEO and GEO, and o r b i t  t r a n s f e r  
missions using electric propulsion. 
of  s o l a r  a r ray  and mission paraneters  was defined 
and the s e n s i t i v i t y  of c o s t  t o  mission duration, 
cover gLass thickness and concentration r a t i o  was 
determined. It was found that f o r  the missions con- 
s idered,  the assumed purchase cost  advantage of 
s i l i c o n  arrays was not  overcome by the grea te r  radi-  
a t i o n  res i s tance  of gallium arsenide arrays.  

A basel ine set 

The use of r e f l e c t o r s  f o r  concentration may 
s i g n i f i c a n t l y  reduce the power system cost .  How- 
ever, gallium arsenide arrays b e n e f i t  considerably 
more from s o l a r  concentration than s i l i c o n  arrays 
in  terms of  mission c o s t  because of their higher  
allowable temperature. 

In the case of o r b i t  t r a n s f e r  missions a cover 
g lass  thickness of  a t  l e a s t  0.05 cm (20 ,mils) i s  re- 
cormended t o  reduce t o t a l  mission cost .  The orbi t -  

a l m i s s i o u s  a r e  less s e n s i t i v e  t o  cover g lass  thick- 
ness. 

Resul ts  ind ica te  t h a t  s o l a r  cell development 
should give a high p r i o r i t y  t o  reducing cell cos ts ,  
and that the development of l o w  cos t ,  l i g h t  weight 
so la r  concentrators should be pursued. 
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